The axial symmetry at finite temperature in Lattice QCD with Overlap fermions

Guido Cossu, KEK

高エネルギー加速器研究機構

New Horizons for Lattice Computations with Chiral Fermions RIKEN BNL Research center workshop – May 14, 2012

Axial symmetry at finite temp. with overlap fermions

Summary:

- Motivation
- Chiral phase transition at finite temperature and axial symmetry
- ✓ Simulating dynamical (overlap) fermions
- ✓ Topology fixing and friends
- ✓ Methodology and results (quenched and $N_f=2$)
- Discussion and conclusions

People involved in this project

JLQCD group: S. Hashimoto, S. Aoki, T. Kaneko, H. Matsufuru,

J. Noaki, E. Shintani

See for example POS(Lattice2010)174 (arXiv:1011.0257),

PoS(Lattice 2011)188 (arXiv:1204.4519), article in prep.

Axial symmetry at finite temp. with overlap fermions

Motivation

Pattern of chiral symmetry breaking at low temperature QCD

$$SU(N_f)_V \times SU(N_f)_A \times U(1)_V \times U(1)_A \to SU(N_f)_V \times U(1)_V$$

Well known facts about axial symmetry

- Axial anomaly Non vanishing topological susceptibility
- Mass splitting of the η ' (958 Mev) with respect to the lighter Goldsone bosons

What is the fate of the axial $U_A(1)$ symmetry at finite temperature $(T \ge T_c)$?

Dirac Overlap operator, retaining the maximal amount of chiral symmetry on the lattice is, theoretically, the best way to answer this question.

• Experimental data: PHENIX(BNL) Phys.Rev. C83 (2011) 054903 "the mass of the eta' meson is reduced by Delta-m > 200 MeV, at the 99.9% confidence level, in the considered model class"

Axial symmetry at finite temp. with overlap fermions

Goal of the current project

Check restoration of axial $U_A(1)$ symmetry by measuring (spatial) meson correlators at finite temperature in full QCD with overlap

Degeneracy of correlators is the signal that we are looking for

$$\sigma(1_{4} \otimes 1_{2}) \stackrel{Chiral sym.}{\longrightarrow} \pi(i\gamma_{5} \otimes \tau^{a})$$

$$\downarrow^{U(1)_{A}} \qquad \qquad \downarrow^{U(1)_{A}}$$

$$\eta(i\gamma_{5} \otimes 1_{2}) \stackrel{Chiral sym.}{\longrightarrow} \delta(1_{4} \otimes \tau^{a})$$

As I will show in this talk, there is one issue to solve before attacking the real problem...

Axial symmetry at finite temp. with overlap fermions

Simulating dynamical overlap fermions

In order to avoid expensive tricks to handle the zero modes of the Hermitian Wilson operator JLQCD simulations use (JLQCD 2006):

- Iwasaki action (suppresses Wilson operator near zero modes)
- Extra Wilson fermions and twisted mass ghosts to rule out the zero modes

Topology is thus fixed throughout the HMC trajectory.

The effect of fixing topology is expected to be a Finite Size Effect (actually O(1/V)), next slides

Axial symmetry at finite temp. with overlap fermions

Fixing topology: how to deal with it at T=0 (I)

Partition function at fixed topology

$$Z_Q = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta \, \exp(-VF(\theta))$$
 $F(\theta) \equiv E(\theta) - i\theta Q/V$

 $Z_Q = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\theta \, \exp(-VF(\theta)) \qquad F(\theta) \equiv E(\theta) - i\theta Q/V$ where the energy can be $E(\theta) = \sum_{n=1}^{\infty} \frac{c_{2n}}{(2n)!} \theta^{2n} = \frac{\chi_t}{2} \theta^2 + O(\theta^4)$ expanded expanded

Using saddle point expansion around $\theta_c=irac{Q}{\sqrt{V}}(1+O(\delta^2))$

one obtains the Gaussian distribution

$$Z_Q = \frac{1}{\sqrt{2\pi\chi_t V}} \exp\left[-\frac{Q^2}{2\chi_t V}\right] \left[1 - \frac{c_4}{8V\chi_t^2} + O\left(\frac{1}{V^2}, \delta^2\right)\right].$$

Axial symmetry at finite temp. with overlap fermions

Fixing topology: how to deal with it at T=0 (II)

From the previous partition function we can extract the relation between correlators at fixed θ and correlators at fixed Q

In particular for the topological susceptibility and using the Axial Ward Identity we obtain a relation involving fermionic quantities:

$$\lim_{|x|\to\text{large}} \langle mP(x)mP(0)\rangle_Q^{\text{disc}} \equiv \frac{1}{V} \left(\frac{Q^2}{V} - \chi_t - \frac{c_4}{2\chi_t V} \right) + O(e^{-m_\pi |x|})$$

P(x) is the flavor singlet pseudo scalar density operator Aoki *et al.* PRD76,054508 (2007)

What is the effect of fixing Q at finite temperature?

Axial symmetry at finite temp. with overlap fermions

Results

- ✓ Simulation details
- Eigenvalues distribution
- **BG/L** ✓ Finite temperature quenched SU(3) at fixed topology Hitachi SR16K
- Meson correlators in two flavors QCD

Axial symmetry at finite temp. with overlap fermions

Simulation details

Pure gauge $(16^3x6, 24^3x6)$:

Iwasaki action + top. fixing term

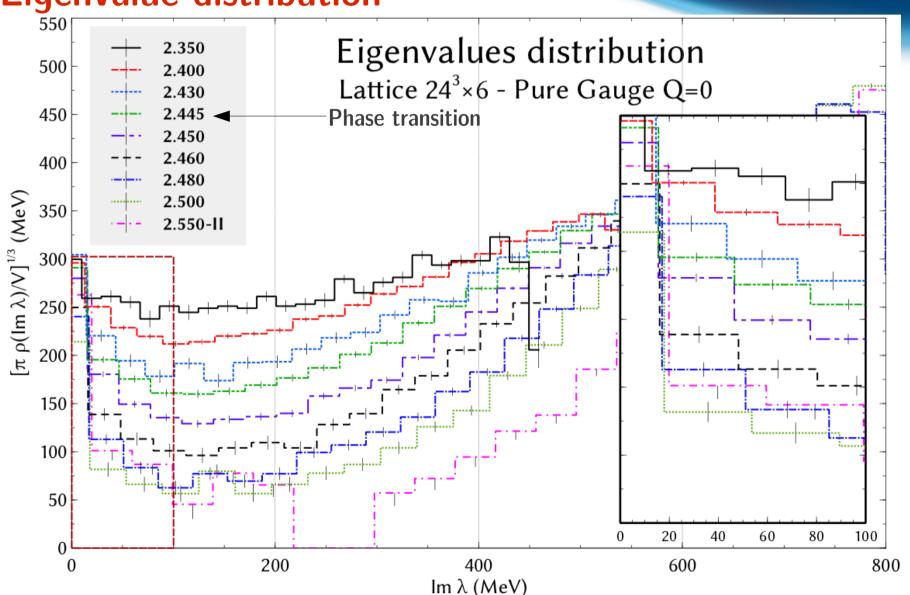
β	a(fm)	T (MeV)	T/Tc
2.35	0.132	249.1	0.86
2.40	0.123	268.1	0.93
2.43	0.117	280.9	0.97
2.44	0.115	285.7	0.992
2.445	0.114	288	1.0
2.45	0.1133	290.2	1.01
2.46	0.111	295.1	1.02
2.48	0.107	305.6	1.06
2.50	0.104	316.2	1.10
2.55	0.094	347.6	1.20

Two flavors QCD (16^3x8) Iwasaki + Overlap + top. Fix O(300) trajectories per T am=0.05, 0.025, 0.01

β	a(fm)	T (MeV)	T/Tc
2.18	0.1438	171.5	0.95
2.20	0.1391	177.3	0.985
2.25	0.12818	192.2	1.06
2.30	0.1183	208.5	1.15
2.40	0.1013	243.5	1.35
2.45	0.0940	262.4	1.45

Axial symmetry at finite temp. with overlap fermions

Eigenvalue distribution



Axial symmetry at finite temp. with overlap fermions

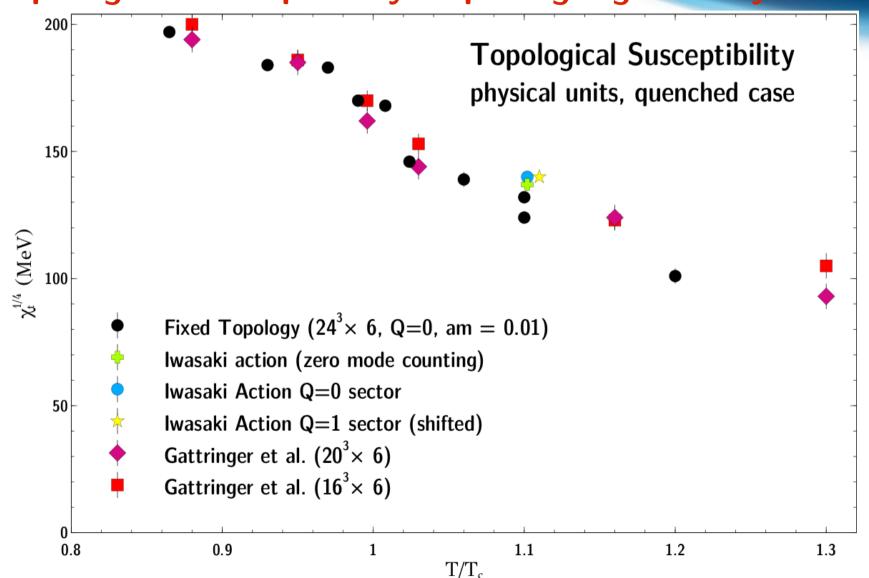
Topological susceptibility in pure gauge theory - I

$$\lim_{|x| \to \text{large}} \langle mP(x)mP(0) \rangle_Q^{\text{disc}} \equiv \frac{1}{V} \left(\frac{Q^2}{V} - \chi_t - \frac{c_4}{2\chi_t V} \right) + O(e^{-m_\pi |x|})$$

- •(Spatial) Correlators are always approximated by the first 50 eigenvalues
- Pure gauge: double pole formula for disconnected diagram
- Topological susceptibility estimated by a joint fit of connected and disconnected contribution.

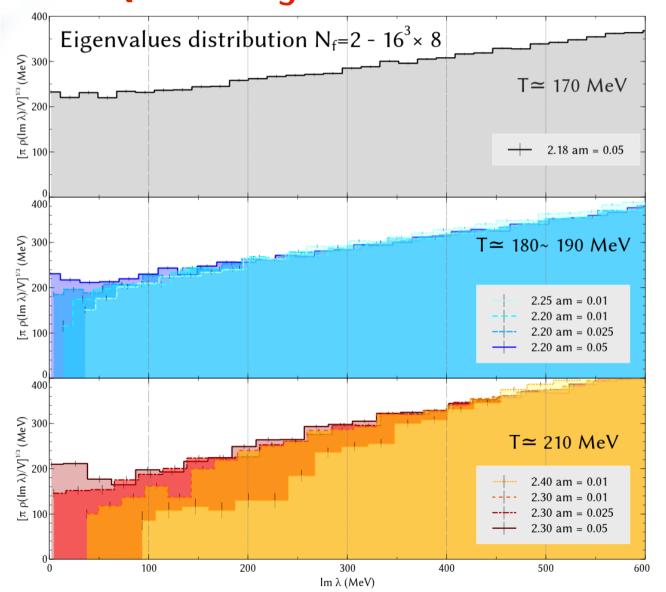
Axial symmetry at finite temp. with overlap fermions

Topological susceptibility in pure gauge theory - II



Axial symmetry at finite temp. with overlap fermions

Full QCD – Eigenvalues



Effect of axial symmetry on the Dirac sperctrum

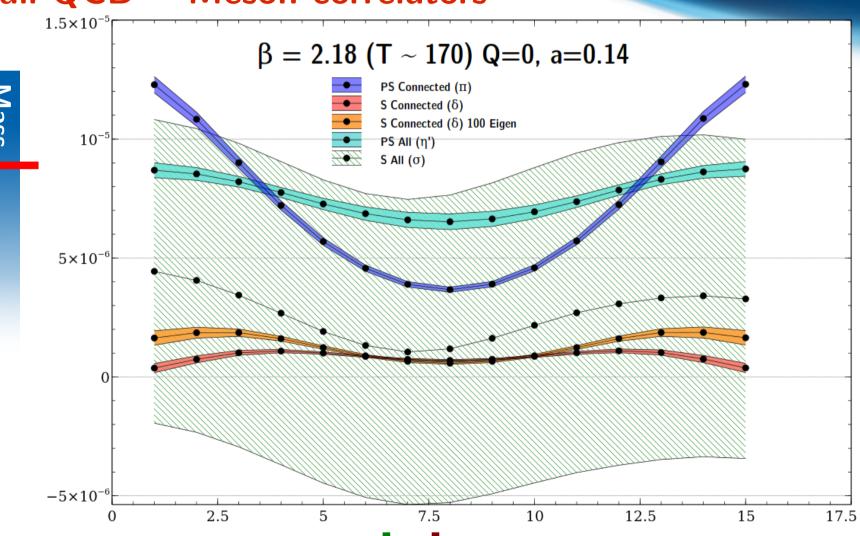
$$\chi^{\pi-\delta} = \int d\lambda \rho_m(\lambda) \frac{4m^2}{\lambda^2 + m^2}$$

If axial symmetry is restored we can conclude that

$$\lim_{\lambda \to 0} \lim_{m \to 0} \frac{\rho_m(\lambda)}{\lambda} = 0$$

Ref: S. Aoki, internal note

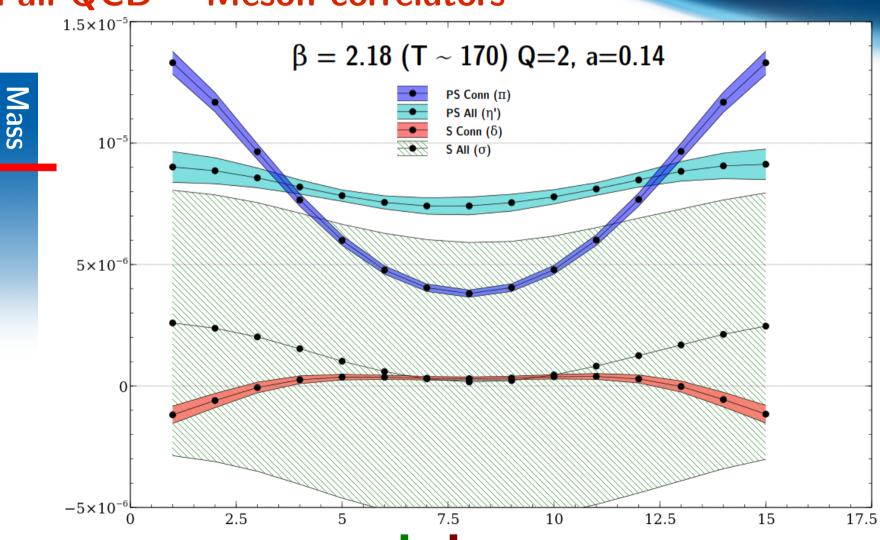
Axial symmetry at finite temp. with overlap fermions



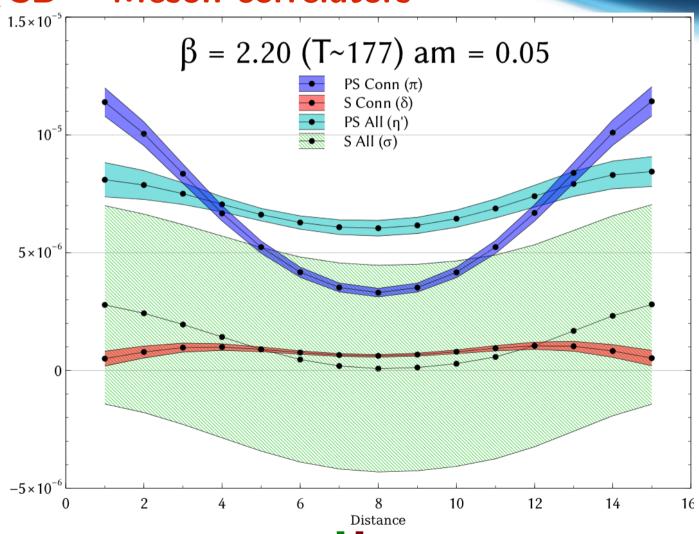
Temperature

高エネルギー加速器研究機構

Axial symmetry at finite temp. with overlap fermions



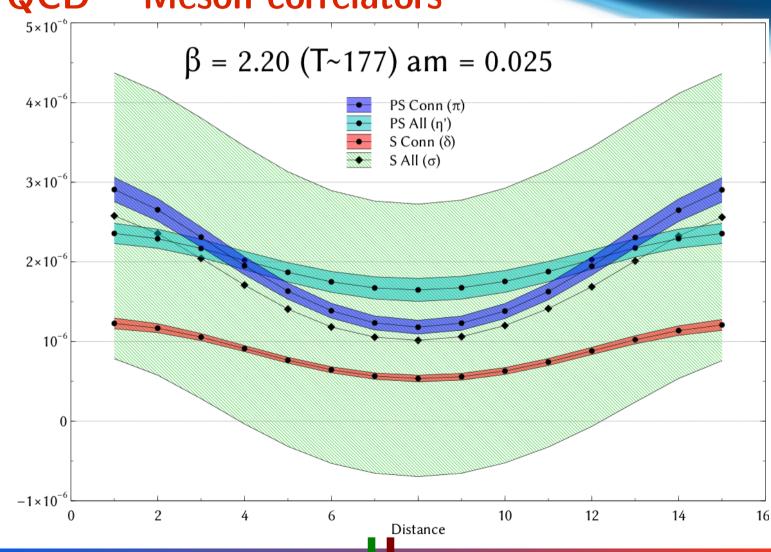
Axial symmetry at finite temp. with overlap fermions



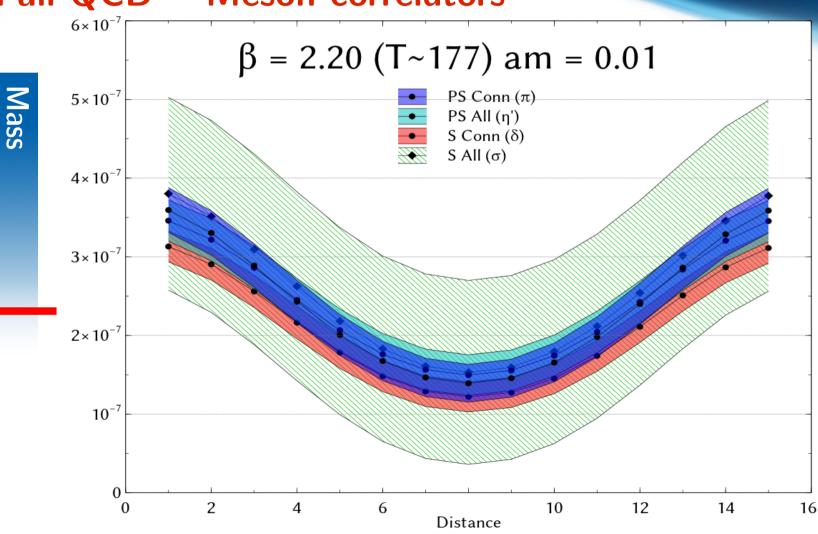
Mass

高エネルギー加速器研究機構

Axial symmetry at finite temp. with overlap fermions



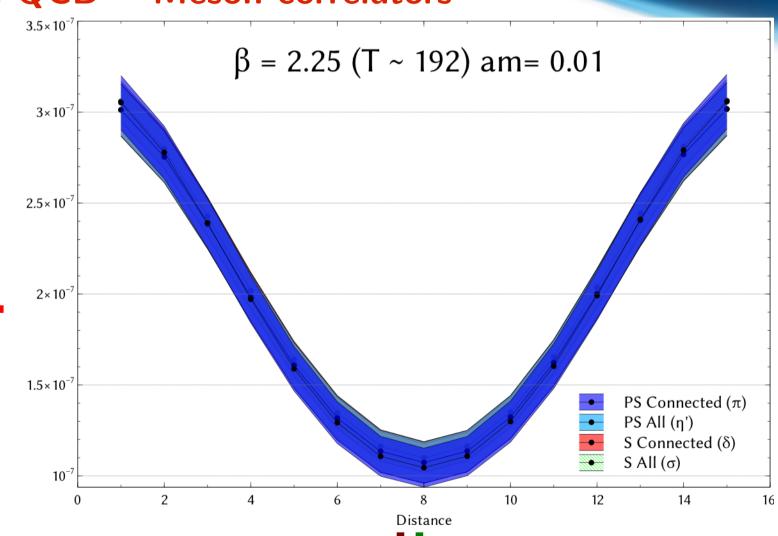
Axial symmetry at finite temp. with overlap fermions



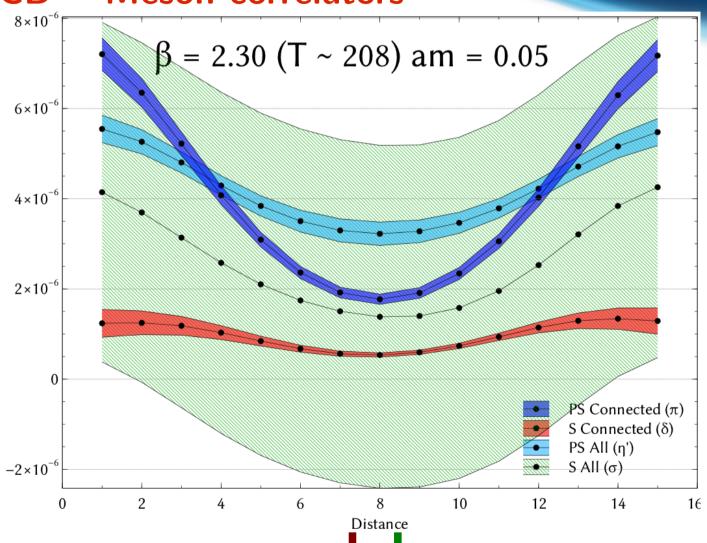
Mass

高エネルギー加速器研究機構

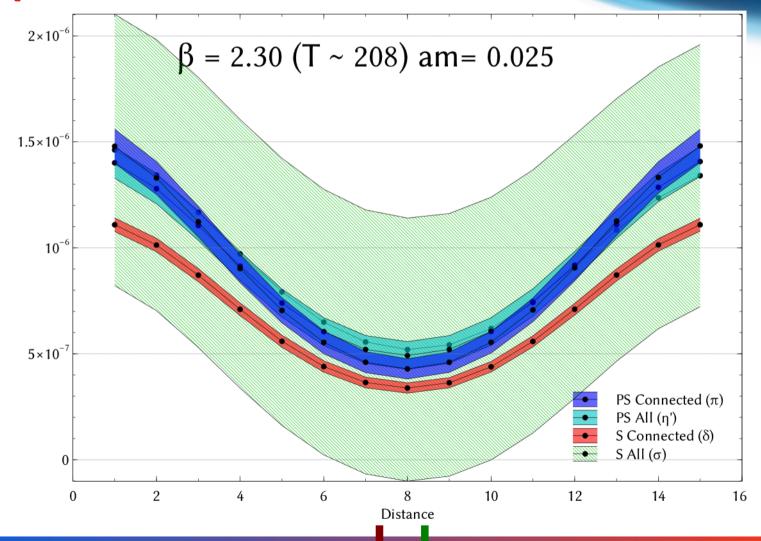
Axial symmetry at finite temp. with overlap fermions



Axial symmetry at finite temp. with overlap fermions



Axial symmetry at finite temp. with overlap fermions

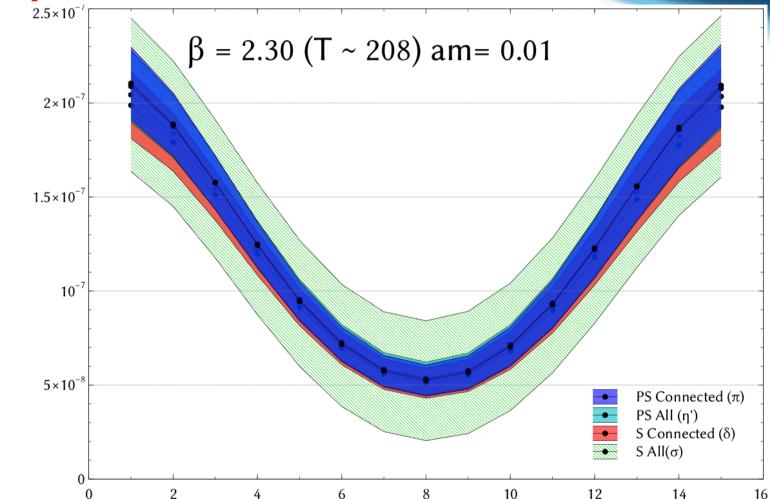


Mass

高エネルギー加速器研究機構

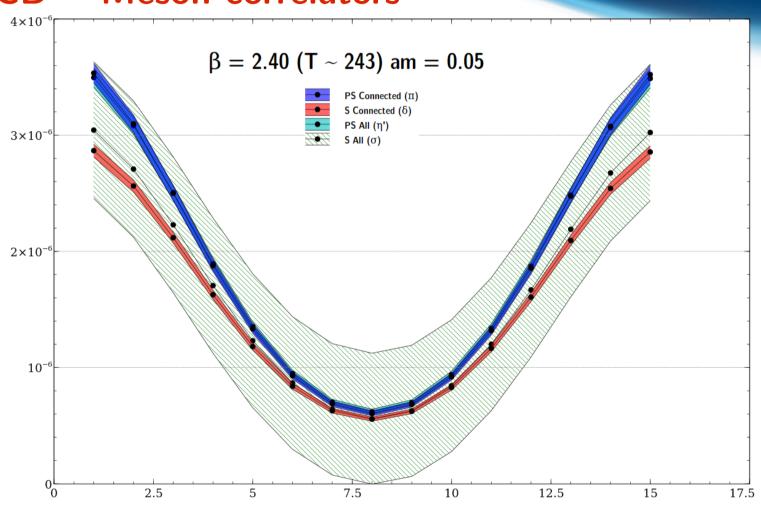
Axial symmetry at finite temp. with overlap fermions

Full QCD – Meson correlators



Distance

Axial symmetry at finite temp. with overlap fermions



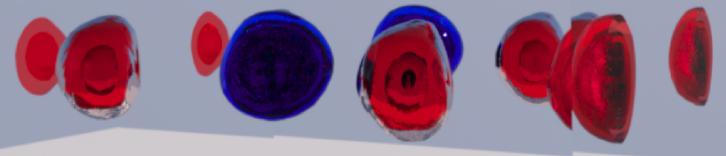
Axial symmetry at finite temp. with overlap fermions

Summary

- Overlap fermions are the best choice to check axial anomaly at finite temperature
- Current machine and algorithms permit now realistic simulations...
- ...at the cost of fixing topology
- We checked feasibility of finite t. sim. by test runs in pure gauge theory
- In pure gauge systematic errors are under control.
- Results in Full QCD show signal of restoration of axial $U_A(1)$ symmetry
- We need 1-2 points more in the chiral limit

Axial symmetry at finite temp. with overlap fermions

ご清聴ありがとうございました



Axial symmetry at finite temp. with overlap fermions

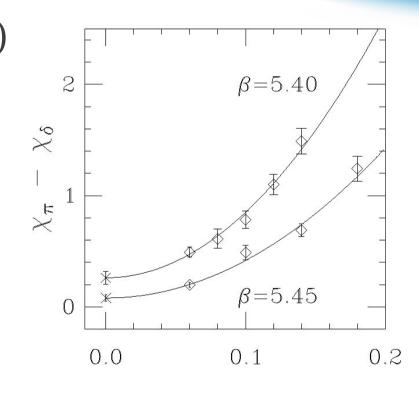
Backup slides

Axial symmetry at finite temp. with overlap fermions

Previous analyses

Vranas (Nucl.Phys.Proc.Suppl. 83 (2000) 414-416) Measured the difference of susceptibilities χ of π and δ .

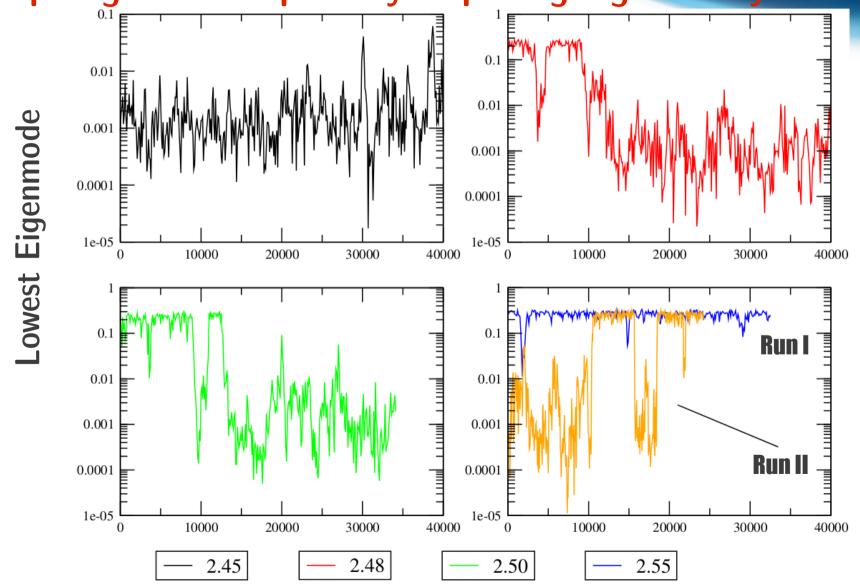
- Action: DWF, $L_s=24$
- Found a very small relative difference just above T_c in the chiral limit
- Residual mass effects?



Other works with staggered fermions established a restoration at $T>T_c$ Even bigger problems due to breaking of $U_A(1)$ by staggered fermions.

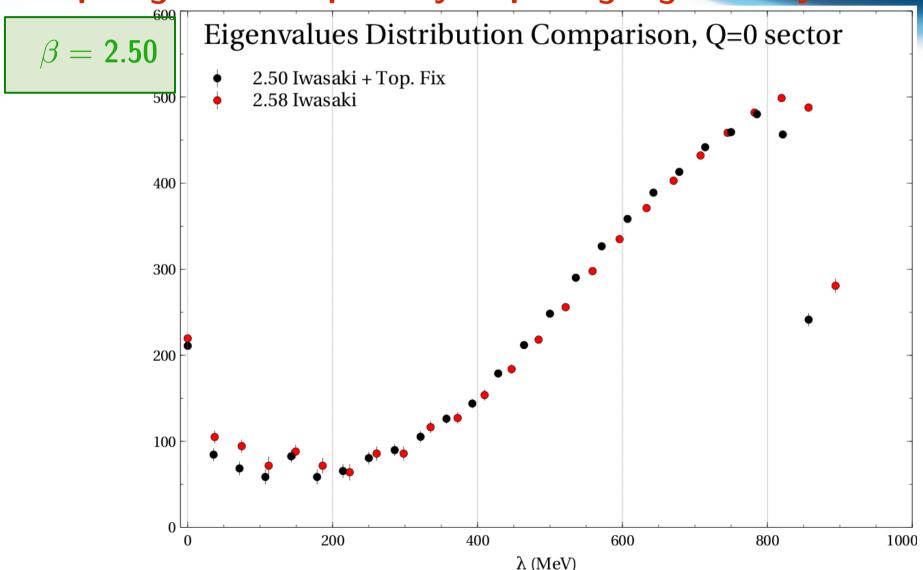
Axial symmetry at finite temp. with overlap fermions

Topological susceptibility in pure gauge theory - III



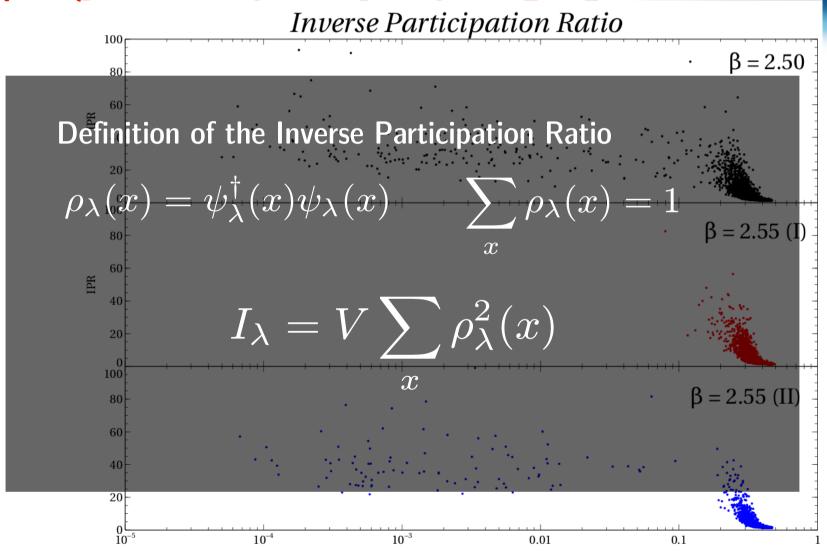
Axial symmetry at finite temp. with overlap fermions

Topological susceptibility in pure gauge theory



Axial symmetry at finite temp. with overlap fermions

Topological susceptibility in pure gauge theory - VII



Axial symmetry at finite temp. with overlap fermions

Topological susceptibility in pure gauge theory - VII

